Luis Pedro Coelho

EMBL

5 July 2013

(EMBL) : e 5 July 2013

A Processing Pipeline in Python

def preprocess(f):
return

def compute(fs, param):
return

def write_output(results):

intermediate — ||
for 1 in glob(*. txt’):
intermediate .append(processing (i)
results — ||
for pvalue in [0.5, 1.0, 2.0, 4.0]
results .append(compute(intermediate , pvalue))
write_output(results)

pedro.org (EMBL) 5 July 2013

A Processing Pipeline in

@TaskGenerator
def preprocess|(f
return

@TaskGenerator
def compute(fs, param
return

@TaskGenerator
def write_output(results

intermediate
for 1 in glob(’*.txt’
intermediate .append(processing (i
results
for pvalue in (0.5, 1.0, 2.0, 4.0
results .append(compute(intermediate , pvalue
write_output(results

pedro.org (EMBL) 5 July 2013

Running jug...

$ jug execute &
[1] 20332

$ jug execute &
[2] 20333

sl

(EMBL)

5 July 2013

Jug Enhances Reproducibility

of Computational Analysis

o “What was the parameter that generated this result? I think it
was Y, right? Had to be.”

@ “Deleted the intermediate results, reran; now everything is
different.”

e “We cannot reproduce the table in our own paper.”

Advantages of Jug

e With jug, changing parameters will trigger recomputation of all
downstream results.

@ jug invalidate handles all dependencies

o Unlike make, you can use any Python function

luis@luispedro.org (EMBL) 5 July 2013

Finding Out More About Jug...

e Talk to me in person
o luis@luispedro.org

@ http://github.com/luispedro/jug
the code

e http://jug.rtfd.org
read the fine documentation

luis@luispedro.org (EMBL) 5 July 2013

http://github.com/luispedro/jug
http://jug.rtfd.org

